Soil microbes drive the classic plant diversity-productivity pattern.
نویسندگان
چکیده
Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.
منابع مشابه
Soil microbes regulate ecosystem productivity and maintain species diversity.
One of the major goals in ecology is to determine the mechanisms that drive the asymptotic increase in ecosystem productivity with plant species diversity. Niche complementarity, the current paradigm for the asymptotic diversity-productivity pattern, posits that the addition of species to a community increases productivity because each species specializes on different resources and thus can mor...
متن کاملThe unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.
Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important r...
متن کاملSoil fungal pathogens and the relationship between plant diversity and productivity.
One robust result from many small-scale experiments has been that plant community productivity often increases with increasing plant diversity. Most frequently, resource-based or competitive interactions are thought to drive this positive diversity-productivity relationship. Here, we ask whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity-pro...
متن کاملBelowground biodiversity effects of plant symbionts support aboveground productivity.
Soil microbes play key roles in ecosystems, yet the impact of their diversity on plant communities is still poorly understood. Here we demonstrate that the diversity of belowground plant-associated soil fungi promotes plant productivity and plant coexistence. Using additive partitioning of biodiversity effects developed in plant biodiversity studies, we demonstrate that this positive relationsh...
متن کاملOpposing phylogenetic diversity gradients of plant and soil bacterial communities.
Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2011